Для перевода числа 11011011.1010 из двоичной в шестнадцатеричную систему счисления, необходимо сначала перевести его в десятичную систему, а полученное число в шестнадцатеричную. Для перевода двоичного числа 11011011.1010 в десятичное необходимо записать его в виде многочлена, состоящего из произведений цифр вида:
A2 = an-1 ∙ 2n-1 + an-2 ∙ 2n-2 + ∙∙∙ + a0 ∙ 20 + a-1 ∙ 2-1 + ∙∙∙ + a-m ∙ 2-m
В результате преобразований получим:
11011011.10102=1 ∙ 27 + 1 ∙ 26 + 0 ∙ 25 + 1 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 + 1 ∙ 2-1 + 0 ∙ 2-2 + 1 ∙ 2-3 + 0 ∙ 2-4 = 1 ∙ 128 + 1 ∙ 64 + 0 ∙ 32 + 1 ∙ 16 + 1 ∙ 8 + 0 ∙ 4 + 1 ∙ 2 + 1 ∙ 1 + 1 ∙ 0.5 + 0 ∙ 0.25 + 1 ∙ 0.125 + 0 ∙ 0.0625 = 128 + 64 + 0 + 16 + 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125 + 0 = 219.62510
Таким образом:
11011011.10102 = 219.62510.
Для перевода десятичного числа 219.625 в шестнадцатеричную систему счисления, необходимо отдельно перевести целую и дробную часть. Для перевода целой части её необходимо последовательно делить на 16 до тех пор, пока остаток не станет меньше чем 16.
— | 219 | 16 | |
208 | 13 | ||
B |
Ответом будет являться обратная последовательность результатов деления:
21910=13B16
Для перевода дробной части 0.625 из десятичной системы в шестнадцатеричную, необходимо выполнить последовательное умножение дробной части на 16, до тех пор, пока результатом умножения не станет целое число или пока не будет достигнута заданная точность вычисления:
0.625 ∙ 16 = 10 (A)
Ответом будет являться прямая последовательность целых частей результатов умножения:
0.62510=0.A16
Ответом будет являться соединение целой и дробной части:
219.62510=13B.A16.
Окончательный ответ:
11011011.10102=13B.A16.